Parametrized Models of Aqueous Free Energies of Solvation Based on Pairwise Descreening of Solute Atomic Charges from a Dielectric Medium

نویسندگان

  • Gregory D. Hawkins
  • Christopher J. Cramer
  • Donald G. Truhlar
چکیده

The pairwise descreening approximation provides a rapid computational algorithm for the evaluation of solute shape effects on electrostatic contributions to solvation energies. In this article we show that solvation models based on this algorithm are useful for predicting free energies of solvation across a wide range of solute functionalities, and we present six new general parametrizations of aqueous free energies of solvation based on this approach. The first new model is based on SM2-type atomic surface tensions, the AM1 model for the solute, and Mulliken charges. The next two new models are based on SM5-type surface tensions, either the AM1 or the PM3 model for the solute, and Mulliken charges. The final three models are based on SM5-type atomic surface tensions and are parametrized using the AM1 or the PM3 model for the solute and CM1 charges. The parametrizations are based on experimental data for a set of 219 neutral solute molecules containing a wide range of organic functional groups and the atom types H, C, N, O, F, P, S, Cl, Br, and I and on data for 42 ions containing the same elements. The average errors relative to experiment are slightly better than previous methods, butsmore significantlysthe computational cost is reduced for large molecules, and the methods are well suited to using analytic derivatives.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions.

We present a new continuum solvation model based on the quantum mechanical charge density of a solute molecule interacting with a continuum description of the solvent. The model is called SMD, where the "D" stands for "density" to denote that the full solute electron density is used without defining partial atomic charges. "Continuum" denotes that the solvent is not represented explicitly but r...

متن کامل

On the transferability of hydration-parametrized continuum electrostatics models to solvated binding calculations

Using molecular mechanics force field partial atomic charges, we show the nonuniqueness of the parametrization of continuum electrostatics models with respect to solute atomic radii and interior dielectric constant based on hydration (vacuum-to-water transfer) free energy data available for small molecules. Moreover, parameter sets that are optimal and equivalent for hydration free energy calcu...

متن کامل

Prediction of SAMPL2 aqueous solvation free energies and tautomeric ratios using the SM8, SM8AD, and SMD solvation models

We applied the solvation models SM8, SM8AD, and SMD in combination with the Minnesota M06-2X density functional to predict vacuum-water transfer free energies (Task 1) and tautomeric ratios in aqueous solution (Task 2) for the SAMPL2 test set. The bulk-electrostatic contribution to the free energy of solvation is treated as follows: SM8 employs the generalized Born model with the Coulomb field ...

متن کامل

Efficient evaluation of the effective dielectric function of a macromolecule in aqueous solution

We propose an analytical approach to calculate the effective dielectric function of proteins in aqueous solution. The screening effect if quantified by a measure of enclosure which is based on the distribution of solute atomic volumes around a pair of charges in a macromolecule. For protein conformations that vary significantly in size and shape, a comparison with finite difference Poisson calc...

متن کامل

Model for Aqueous Solvation Based on Class IV Atomic Charges and First Solvation Shell Effects

We present a new set of geometry-based functional forms for parametrizing effective Coulomb radii and atomic surface tensions of organic solutes in water. In particular, the radii and surface tensions depend in some cases on distances to nearby atoms. Combining the surface tensions with electrostatic effects included in a Fock operator by the generalized Born model enables one to calculate free...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1996